

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2015
Homework 6 – Strings and File I/O

Assignment: Homework 6 – Strings and File I/O
Due Date: Thursday, October 22nd, 2015 by 8:59:59 PM
Value: 4% of final grade

Homework 6 is designed to help you practice using file I/O, including reading
to files, writing to files, and making use of string functions like split() to

help parse the input. More importantly, you will be solving problems using
algorithms you create and code yourself.

Remember to enable Python 3 before you run your programs:
 /usr/bin/scl enable python33 bash

Instructions
Each one of these exercises should be completed in a separate python file.
For this assignment, you may assume that all the input you get will be of the
correct type (e.g., if you ask the user for a whole number, they will give you
an integer).

For this assignment, you'll need to follow the class coding standards, a
set of rules designed to make your code clear and readable. The class coding
standards are on Blackboard under “Course Documents” in a file titled
“CMSC 201 - Python Coding Standards.”
You will lose major points if you do not following the 201 coding standards.

A very important piece of following the coding standards is writing a complete
file header comment block. Make sure that each file has a comment block
at the top (see the coding standards document for an example).

NOTE: You must use main() in each of your files.

CMSC 201 – Computer Science I for Majors Page 2

Details
Homework 6 is broken up into three parts. Make sure to complete all 3 parts.

NOTE: Your filenames for this homework must
match the given ones exactly.

And remember, filenames are case sensitive.

hw6_part1.py
For this part of the homework you will write code that creates a simple text file,
called names.txt, based on input from the user.

You will prompt the user for a name, and will continue to accept new names until
they enter “DONE”. For each of these names, you should print a line saying

“Hello Name!” to the names.txt file.

You do not need to change anything about the name (e.g., names do not need to
be changed to start with a capital letter.) The name may also be more than word,
and your program should accept that.

(HINT: Make sure to open the file for writing, and to close it when you’re done.)

You can check the contents of the file names.txt by opening it in emacs:
 emacs names.txt

Or by using the “more” command to print the contents to the terminal:
 more names.txt

(If your file is very long, it will display one “screen” worth of text at a time. You
can move to the next screen by hitting the space bar, or you can quit immediately
by typing “q” – you don’t need to hit enter afterwards.)

Sample output for this problem can be found on the next page.

CMSC 201 – Computer Science I for Majors Page 3

Here is the sample output for hw6_part1.py, with the user input in blue.
Your output does not need to be identical, but should be similar.

bash-4.1$ python hw6_part1.py

Please enter a name (or "DONE" to stop): Aya

Please enter a name (or "DONE" to stop): Brandon

Please enter a name (or "DONE" to stop): CARLY!!!

Please enter a name (or "DONE" to stop): David

Please enter a name (or "DONE" to stop): e e cummings

Please enter a name (or "DONE" to stop): Francoise

Please enter a name (or "DONE" to stop): General Patton

Please enter a name (or "DONE" to stop): Hrabowski

Please enter a name (or "DONE" to stop): DONE

bash-4.1$ more names.txt

Hello Aya!

Hello Brandon!

Hello CARLY!!!!

Hello David!

Hello e e cummings!

Hello Francoise!

Hello General Patton!

Hello Hrabowski!

CMSC 201 – Computer Science I for Majors Page 4

hw6_part2.py
For this part of the homework, you will calculate a weighted grade from data
contained in a file. (REMINDER: A weighted total is computed by multiplying
each grade by the corresponding weight and adding them together.)

(WARNING! This part of the homework is the most challenging, so budget
plenty of time and brain power. And read the instructions carefully!)

Your program should first prompt the user for the name of the file they want to
read the data from. (You can assume that the file the user provides exists in
the current directory. In other words, it will open successfully.)
After you open the file, you will use the data inside (weights and scores) to
calculate and print out the user’s final weighted score.

The file will be formatted as follows (examples below and on next page):

 One or more lines of numbers, separated by spaces

 On each line:
o First number is a decimal (the weight for that type of assignment)

 You do not need to check that the weights add up to 1
o All following numbers are integers (there will be at least 1)

 (The different scores for that type of assignment)
 You do not need to check that the scores are valid

 May have different amounts of scores for each assignment type

 May have any number of assignment types (but at least 1)

For example, the line
 0.45 72 100 58 44 93 89 78 92

means that this type of assignment is worth 45% of the total grade. There
are eight total assignments of this type.
We can calculate the average of these eight assignments to be 78.25. If we
multiply 78.25 by the weight, we can calculate this part of the weighted grade
to be 35.2125 %. (See the sample input below for more examples.)

(HINT: Make sure to open the file for reading, and to close it when you’re done.)

HINT: Make sure you use the filename provided by the user when opening
the file. We will test your code with files that aren’t named grades.txt.

CMSC 201 – Computer Science I for Majors Page 5

PROTIP: This would be a good time to use incremental programming!
Incremental development is when you are only working on a small piece of
the code at a time, and testing that the piece of code works before moving on
to the next piece. This makes it a lot easier to fix any mistakes.
For example, for this problem, you might first write the code to get and use
the name of the file, and test that this works before moving on. Next, you
might write the code to read each line, and test that this works before moving
on. Then, you might write the code to read in and store the weight and the
scores on each line, and test that this works before moving on. etc…

Here is some sample output, with the user input in blue. (Please note that
the line containing the user input has wrapped around from the previous line.)

bash-4.1$ python hw6_part2.py

Please enter the name of the file that contains the

grades: grades.txt

Your final weighted score is 79.5

Here is the sample input file, grades.txt, that was used to create the

sample output above.
In this sample input, the user has 3 assignments that together are worth 70%
of the grade; 10 assignments that together are 20% of the grade, and 5
assignments that together are worth 10% of the grade.

0.7 70 89 84

0.2 70 52 85 91 77 0 70 88 100 47

0.1 100 96 88 84 92

You can directly download the file using the “cp” command. The command

below will copy the file “grades.txt” from my public directory to your current

directory. The period at the end (“.”) means that the file will have the same

name after you copy it, so grades.txt will be the copied file’s name. Make

sure to run the command from the folder you want the file to be copied into!

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/grades.txt .

CMSC 201 – Computer Science I for Majors Page 6

hw6_part3.py
Finally, you will write a program that takes in the name of a file from the user
and calculates the total number of words in the file, as well as the average
word length.

This time, the filename you get from the user must be checked for validity:
the filename must end in either “.dat” or “.txt” in order to be considered a

valid filename for this program. If the user inputs an invalid filename
(e.g., “book.doc”) you must continue to prompt them until they give a valid

filename.

(HINT: If an invalid filename is given, your program should also tell the user
what a valid filename looks like – see the sample output for an example.)

(HINT: Some of the code you wrote for hw4_part3.py may help you to check if
the end of the filename is valid.)

Once you have a valid filename from the user, you should open the file and
count the total number of words in the file, as well as calculating the average
word length.

You may assume:

 A filename that ends in “.dat” or “.txt” will successfully open a file

when used with the function open()

 A “word” in a file is any set of characters separated by a space
o For example, “copy-right 1977 by author of book”

would be six words (“copy-right” is a single word and the

number “1977” counts as a word). You don’t need to do any

checking of word contents.

(HINT: Make sure to open the file for reading, and to close it when you’re done.)

Sample output for this problem can be found on the next page.

CMSC 201 – Computer Science I for Majors Page 7

Here is the sample output for hw6_part3.py, with the user input in blue.
Your output does not need to be identical, but should be similar.

bash-4.1$ python hw6_part3.py

Please enter the name of the file to open: book.text

 The file must end in .txt or .dat to be valid.

Please enter the name of the file to open: myFile.doc

 The file must end in .txt or .dat to be valid.

Please enter the name of the file to open: shelley.txt

The file shelley.txt has 77986 words in it.

On average, each word is 4.60644218193009 characters long.

The sample input file that was used to create the sample output above,
shelley.txt, is much too long to include in this document. However, you

can directly download the file using the “cp” command.

The command below will copy the file “shelley.txt” from my public

directory to your current directory. The period at the end (“.”) means that the

file will have the same name after you copy it, so shelley.txt will be the

copied file’s name. Make sure to run the command from the folder you want
the file to be copied into!

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/shelley.txt .

CMSC 201 – Computer Science I for Majors Page 8

Submitting
Once all three parts of your Homework 6 are complete, it is time to turn them
in with the submit command.

Don’t forget to complete the header block comment for each file! Make sure
that you updated the header block’s file name and description for each file.

You must be logged into your GL account, and you must be in the same
directory as the Homework 6 files. To double check this, you can type ls.

linux1[3]% ls

hw6_part1.py hw6_part2.py hw6_part3.py

linux1[4]% █

To submit your files, we use the submit command, where the class is

cs201, and the assignment is HW6. Type in (all on one line)
submit cs201 HW6 hw6_part1.py hw6_part2.py hw6_part3.py

and press enter.

linux1[4]% submit cs201 HW6 hw6_part1.py hw6_part2.py

hw6_part3.py

Submitting hw6_part1.py...OK

Submitting hw6_part2.py...OK

Submitting hw6_part3.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can double-check that all three homework files were submitted by
using the submitls command. Type in submitls cs201 HW6 and hit

enter.

And you’re done!

	Instructions
	Details
	Submitting

